

ILWS Requirements

- ILWS may have broader goals, motivation and requirements than LWS.
- Predictive capability still too small so scientific understanding must be main driver.
- Application side has proven useful to get funding for LWS, should not be oversold for ILWS.
- Coordination and possibly integration required with existing international "networking".

What is ILWS?

- Core space infrastructure from major agencies.
- Add on from other agencies and institutions
 - Payload provision
 - Technology development
 - Theory and modelling
 - Supplementary missions
 - Other observational tools (ground based, rockets, archives)
 - Education and outreach
 - Service providers

Norwegian Priorities (1)

- Historical tradition in studies of Sun-Earth relationships (Birkeland & Størmer).
- Build up of solar physics from the 1950-ties.
- Scientific infrastructure, ARR, ALOMAR, SvalRak, EISCAT.
- Participation in several recent space missions: POLAR, Geotail, SOHO, Cluster.
- >85% of Norwegian space science is within solarterrestrial physics.

Norwegian Priorities (2)

- To gain insight and understanding of the underlying physical processes governing:
 - The heating of the upper solar atmosphere.
 - The exited and structure of solar pmodes.
 - The microphysics of the auroral zone and polar cusp
 - Middle atmosphere dynamics
- Use of geographical advantage, the ESA membership and other suitable bilateral partnerships.
- National financing make pure non-ESA satellite projects difficult.

Solar Physics-Securing Continuity

UiO with MSSL

- Clear line in priorities:
 - HRTS (rockets/shuttle)
 - SOHO
 - Solar B
 - SDO
- Strong in solar physics due to clear will to prioritize.
- Major setback for the future of solar physics in Norway with the nonselection of the two SDO proposals.
- Solar B and Solar Orbiter can only partially remedy this problem.
- More theory/modelling is needed to ensure the predictive power of an ILWS programme.

Space Physics-Complementary Tools

- Combination of satellites, sounding rockets and ground measurements to gain added value.
- Strong participation i Cluster.
- Continuity required!
- For internationalization to ILWS it is necessary to look at both the STP and LWS missions.
- MMS, GEC as well as MC missions of interest to Norway.

Leading Infrastructure

- Andøya Rocket Range (69°N), more than 700 launches since 1962. 14 in ten hours this summer. The main polar launch site.
- SvalRak (79°N), unique location in the polar cusp.
- EISCAT with sites on Svalbard in Norway, Sweden and Finland, both in the auroral zone and in the polar cusp.
- SvalSat is becoming the leading ground station for polar orbiting satellites.

New Approach to Rockets

- Do only what satellites or ground based instrumentation cannot do:
 - High spatial and time resolution, and
 - Close links with other instrumentation, and
 - Low DV, specific conditions and directions, or
 - Altitude below 130 km
- Lower costs to get more launches and data:
 - Extremely small payloads (8 kg, 50 mm Ø, 15-20 k€) up to 110 km.
 - Recovery of medium sized and large expensive payloads up to 150 km
 - Use of standardized payload module and support infrastructure (Hotel Payload)
 - Increasing use for education and outreach

Svalbard- A Unique Location

- Ideal location for daytime aurora
- Easy access, moderate climate and good general infrastructure
- Extended suite of scientific infrastructure
- Data reception from all orbits of polar orbiting satellites.

Plasma clouds with EISCAT

- Plasma clouds are created near the daytime aurora and drifts over the pole.
- EISCAT Svalbard Radar is a versatile tool to study the "stormy" surroundings of the aurora - the wind and density of the electron plasma.

A big plasma cloud drifting northward on 19 December, 2001. In the rightmost picture we see a new cloud forming south of Svalbard.

Unresolved problem

What causes decametre scale plasma irregularities in the cusp for the HF radar to backscatter from?

Gradient drift instability growth rate

$$g = -\left(\frac{1}{n_0}\right)\left(\frac{\Delta n}{\Delta y}\right)\left(\frac{E}{B}\right)$$
 5-10 min

ICI-1 Investigation of Cusp Irregularities

ICI-1

- Electrical fields (DC/AC): UiO
- Positive ionprobe: FFI
- High energy particles: UiB
- Magnetic fields : CETP, Velizy
- Current measurements: LPCE, Orléans
- Payload: 50 kg
- Configuration: Nike/ Improved Orion
- Apogee: ~320 km
- December 2003

Conclusions

- Norway is strongly supportive of an ILWS programme with a primary science and a secondary application justification.
- Need a broad band of observational and theoretical tools.
- Unique contributions from Norway in fields of sounding rockets and infrastructure.
- On satellite side ESA connection is required for Norwegian national funding.
- Requires close co-ordination in mission planning and payload selection, specially between the major agencies.